
Package: TPLSr (via r-universe)
September 13, 2024

Type Package

Title Thresholded Partial Least Squares Model for Neuroimaging Data

Version 1.0.4

Description Uses thresholded partial least squares algorithm to create
a regression or classification model. For more information, see
Lee, Bradlow, and Kable <doi:10.1016/j.crmeth.2022.100227>.

License GPL-3

Depends R (>= 3.5), plotly (>= 4.9.2.1)

Encoding UTF-8

LazyData true

NeedsCompilation no

RoxygenNote 7.2.0

LazyDataCompression xz

Suggests knitr, rmarkdown

VignetteBuilder knitr

Repository https://sangillee.r-universe.dev

RemoteUrl https://github.com/sangillee/tplsr

RemoteRef HEAD

RemoteSha cc0f07bb8c45972fd5bc6c55c4a5ce95a305f82d

Contents
evalTuningParam . 2
makePredictor . 3
plotTuningSurface . 4
TPLS . 4
TPLSdat . 5
TPLSpredict . 6
TPLS_cv . 6

Index 8

1

https://doi.org/10.1016/j.crmeth.2022.100227

2 evalTuningParam

evalTuningParam Evaluating cross-validation performance of a TPLS_cv model at com-
pvec and threshvec

Description

Evaluating cross-validation performance of a TPLS_cv model at compvec and threshvec

Usage

evalTuningParam(
TPLScvmdl,
type = c("Pearson", "negMSE", "ACC", "AUC", "LLbinary", "Spearman"),
X,
Y,
compvec,
threshvec,
subfold = NULL

)

Arguments

TPLScvmdl TPLS_cv model created from TPLS_cv

type CV performance metric type. One of LLbinary, negMSE, Pearson, Spearman,
AUC, ACC.

X The same X as used in TPLScvmdl.

Y The SAME Y as used in TPLScvmdl.

compvec Vector of number of components to test in cross-validation.

threshvec Vector of threshold level (0 ~ 1) to test in cross-validation.

subfold (Optional) vector of subdivision within testing fold to calculate performance.
For example scan run division within subject.

Value

A evalTuningParam object that contains the following attributes.

• type: Cross validation performance measure type, as specified in the input

• threshval: Same as the input threshvec

• compval: Same as the input compvec

• perfmat: Performance measure 3D matrix: length(compvec)-by-length(threshvec)-by-numfold

• perf_best: Best CV performance out of all combinations of compvec and threshvec

• compval_best: Number of components that gave the best performance (i.e., perf_best)

• threshval_best: Threshold level that gave the best performance (i.e., perf_best)

makePredictor 3

• perf_1se : Performance of the most parsimonious model (least number of coefficients) that
is within 1 standard error of perf_best.

• compval_1se : Number of components that gave perf_1se

• threshval_1se : Threshold level that gave perf_1se

• best_at_threshold : a 3-column matrix; first column is max performance at threshold,
second column is threshold values, third column is number of components for the best model
at threshold

makePredictor Method for extracting the T-PLS predictor at a given compval and
threshval

Description

Method for extracting the T-PLS predictor at a given compval and threshval

Usage

makePredictor(TPLSmdl, compval, threshval)

Arguments

TPLSmdl A TPLS object created from using function TPLS

compval Vector of number of components to use in final predictor. Providing a vector
will provide multiple betamaps (e.g., c(3,4,5) will provide three betamaps each
with 3, 4, and 5 PLS components)

threshval Threshold number between 0 and 1 (inclusive) for thresholding the betamap.
This must be a scalar.

Value

• bias: The intercept of the extracted model. Vector of intercepts if compval is a vector.

• betamap: Column vector of betamap. Matrix of betamaps if compval is a vector.

4 TPLS

plotTuningSurface Plots the tuning surface of TPLS

Description

Plots the tuning surface of TPLS

Usage

plotTuningSurface(object)

Arguments

object : evalTuningParam object

TPLS Constructor method for fitting a T-PLS model with given data X and Y.

Description

Constructor method for fitting a T-PLS model with given data X and Y.

Usage

TPLS(X, Y, NComp = 25, W = NULL, nmc = 0)

Arguments

X Numerical matrix of predictors. Typically single-trial betas where each column
is a voxel and row is observation

Y Variable to predict. Binary 0 and 1 in case of classification, continuous variable
in case of regression

NComp (Optional) Number of PLS components to compute. Default is 25.

W (Optional) Observation weights. By default, all observations have equal weight.

nmc (Optional) ’no mean centering’. Default is 0. If 1, T-PLS will skip mean-
centering. This option is only provided in case you already mean-centered the
data and want to save some memory usage.

TPLSdat 5

Value

A TPLS object that contains the following attributes. Most of the time, you won’t need to access
the attributes.

• NComp: The number of components you specified in the input

• W: Normalized version of the observation weights (i.e., they sum to 1)

• MtrainX: Column mean of X. Weighted mean if W is given.

• MtrainY: Mean of Y. Weighted mean if W is given.

• scoreCorr: Correlation between Y and each PLS component. Weighted correlation if W is
given.

• pctVar: Proportion of variance of Y that each component explains.

• betamap: v-by-NComp matrix of TPLS coefficients for each of the v variables, provided at
each model with NComp components.

• threshmap : v-by-NComp matrix of TPLS threshold values (0~1) for each of the v variables,
provided at each model with NComp components.

See vignettes for tutorial

TPLSdat Sample participant data from a left-right button press task

Description

A dataset containing five sample participant’s binary button presses inside the scanner (left/right).

Usage

TPLSdat

Format

A data frame with following variables

X Brain image single trial coefficients. N-by-v matrix

Y Left = 0, Right = 1, binary indicator of participant choice

subj Subject number (i.e., 1, 2, 3)

run Run number (i.e., 1, 2, 3, 4, 5, 6, 7, 8)

mask Binary 3D brain image that indexes where the variables in X came from.

Source

Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., ... &
Diefenbach, P. (2017). No effect of commercial cognitive training on brain activity, choice behavior,
or cognitive performance. Journal of Neuroscience, 37(31), 7390-7402.

6 TPLS_cv

TPLSpredict Method for making predictions on a testing dataset testX

Description

Method for making predictions on a testing dataset testX

Usage

TPLSpredict(TPLSmdl, compval, threshval, testX)

Arguments

TPLSmdl A TPLS object created from using function TPLS

compval Vector of number of components to use in final predictor. Providing a vector will
provide multiple predictions (e.g., c(3,4,5) will provide three prediction columns
each with 3, 4, and 5 PLS components)

threshval Threshold number between 0 and 1 (inclusive) for thresholding the betamap.
This must be a scalar.

testX Data that you want to predict the Y of

Value

• score: Column vector of prediction scores. Matrix of scores if compval is a vector.

TPLS_cv Constructor method for fitting a cross-validation T-PLS model

Description

Constructor method for fitting a cross-validation T-PLS model

Usage

TPLS_cv(X, Y, CVfold, NComp = 25, W = NULL, nmc = 0)

Arguments

X Numerical matrix of predictors. Typically single-trial betas where each column
is a voxel and row is observation

Y Variable to predict. Binary 0 and 1 in case of classification, continuous variable
in case of regression

TPLS_cv 7

CVfold Cross-validation testing fold information. Can either be a vector or a matrix,
the latter being more general. Vector: n-by-1 vector. Each element is a number
ranging from 1 ~ numfold to identify which testing fold each observation be-
longs to Matrix: n-by-numfold matrix. Each column indicates the testing data
with 1 and training data as 0. Example: For leave-one-out CV, Vector would be
1:n, Matrix form would be eye(n) Matrix form is more general as it can have
same trial be in multiple test folds

NComp (Optional) Number of PLS components to compute. Default is 25.

W (Optional) Observation weights. Optional input. By default, all observations
have equal weight. Can either be a n-by-1 vector or a n-by-nfold matrix where
each column is observation weights in that CV fold

nmc (Optional) ’no mean centering’. See TPLS for more detail. Turning this on will
skip mean centering on all cross validation folds, so they should all be mean-
centered already

Value

A TPLS_cv object that contains the following attributes. Most of the time, you won’t need to access
the attributes.

• NComp: The number of components you specified in the input

• numfold: Total number of cross-validation folds

• CVfold: A matrix of indicators for testing data for each cross validation fold in each column

• cvMdls : A vector of TPLS models, one for each fold.

See vignettes for tutorial

Index

∗ datasets
TPLSdat, 5

evalTuningParam, 2

makePredictor, 3

plotTuningSurface, 4

TPLS, 4
TPLS_cv, 6
TPLSdat, 5
TPLSpredict, 6

8

	evalTuningParam
	makePredictor
	plotTuningSurface
	TPLS
	TPLSdat
	TPLSpredict
	TPLS_cv
	Index

